TASMANIAN FISHERIES AND AQUACULTURE INDUSTRY 2020/21: ECONOMIC CONTRIBUTIONS – KEY SECTORS

Presented by the Institute for Marine and Antarctic Studies (IMAS). Economic estimates provided by IMAS and BDO.
Tasmanian Fisheries and Aquaculture Industry 2020/21: Economic Contributions Summary 2023

OWNERSHIP OF INTELLECTUAL PROPERTY RIGHTS

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Institute of Marine and Antarctic Studies, University of Tasmania.

CREATIVE COMMONS LICENCE

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode.

Inquiries regarding the licence and any use of this document should be sent to: IMAS.admin@utas.edu.au

DISCLAIMER

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider, IMAS or the University of Tasmania.

ACKNOWLEDGMENTS

BDO and IMAS have relied on the cooperation of data custodians at the Department of Natural Resources and the Environment, Tasmania.

DESIGN AND IMAGE CREDITS

Design: Stephanie Morison Design.
Images throughout: IMAS.
This report presents a summary of the economic contribution of six (6) key fisheries and aquaculture production sectors to the Tasmanian economy for the 2020/21 financial year:

- Tasmanian Rock Lobster Fishery
- Tasmanian Abalone Fishery
- Tasmanian Scalefish Fishery
- Tasmanian Salmonid Aquaculture
- Tasmanian Pacific Oyster Aquaculture
- Tasmanian Abalone Aquaculture

It details each of the above production sectors’ contribution to the State economy for the 2020/21 financial year. The contribution of fish processing sectors and farm gate retail activity is not included.

This work was undertaken by the Institute for Marine and Antarctic Studies at the University of Tasmania in collaboration with BDO and builds on the foundations and approach set out in 2017/18 National Fisheries and Aquaculture Industry Contributions Study (FRDC project 2017-210).

Together with earlier assessments, it provides a means of measuring and monitoring the contribution of Tasmania’s seafood production activities to the economic prosperity and wellbeing of the Tasmanian community over time.

Estimates are based on the best available data and most appropriate methods given that data. Full results and discussion are provided in Tasmanian Fisheries and Aquaculture Industry 2020/21: Economic Contributions Technical Report.

Future work will expand this analysis to include other seafood and supply chain sectors (e.g., seafood processing).

This report considers the economic contribution of key fishery and aquaculture industries in Tasmania. Comparisons of these measures to economic contributions reported for recreational fisheries should not be made.

Generally speaking, the estimates of commercial fisheries are narrower in scope than those currently available for recreational fishing. Commercial fisheries estimates exclude flow-on activity in seafood processing, wholesaling and transportation, and in food services. This means the direct comparison of commercial estimates with any currently available recreational fishing results is not supported.
FISHERIES PRODUCTION
TASMANIAN ROCK LOBSTER FISHERY PRODUCTION

ECONOMIC CONTRIBUTION TO TASMANIA

In 2020/21, the Tasmanian Rock Lobster fishery contributed $51 million dollars (total GVA) to the Tasmanian economy.

$51 MILLION
TOTAL GVA

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

236 PERSONS
DIRECT

208 PERSONS
INDIRECT

444 TOTAL PERSONS

Adding Value

DIRECT GVA

$26.3 MILLION
FROM CATCH/PRODUCTION IN THE TASMANIAN ROCK LOBSTER FISHERY

INDIRECT GVA

$24.6 MILLION

$14.2M FROM HOUSEHOLD RE-SPENDING OF INCOME
$10.5M FROM BUSINESS RE-SPENDING IN OTHER SECTORS

Household Income

TOTAL HOUSEHOLD INCOME

$26.9 MILLION
FROM THE TASMANIAN ROCK LOBSTER FISHERY

$12.9M EARNED DIRECTLY AS INCOME BY FISHING HOUSEHOLDS
$14.0M EARNED IN OTHER TAS HOUSEHOLDS AS A RESULT OF ROCK LOBSTER FISHING

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.

Contribution to Employment is measured as the total number of persons engaged directly or indirectly in production from the sector. It does not reflect the prevalence of part time work or those with irregular hours.

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers’ superannuation contributions and income tax, but excludes payroll tax. Note, totals may not sum due to rounding.
In 2020/21, the Tasmanian Abalone fishery contributed $53 million dollars (total GVA) to the Tasmanian economy.

ECONOMIC CONTRIBUTION TO TASMANIA

TOTAL GVA

$53 MILLION

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

TOTAL PERSONS

248

DIRECT

150 PERSONS

INDIRECT

98 PERSONS

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers’ superannuation contributions and income tax, but excludes payroll tax. Note, totals may not sum due to rounding.

*Note, imputed wage value for a small qty of unpaid quota holders’ time (admin tasks related to quota owning) unaccounted for.
In 2020/21, the Tasmanian Scalefish fishery contributed $6 million dollars (total GVA) to the Tasmanian economy.

ECONOMIC CONTRIBUTION TO TASMANIA

$6 MILLION TOTAL GVA

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

DIRECT GVA

$2.6 MILLION FROM CATCH/PRODUCTION IN THE TASMANIAN SCALEFISH FISHERY

INDIRECT GVA

$3.6 MILLION

DIRECT

$1.8M

INDIRECT

$2.1M

TOTAL GVA

159* PERSONS

190 PERSONS

TOTAL

31 PERSONS

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers’ superannuation contributions and income tax, but excludes payroll tax. Note, totals may not sum due to rounding.

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.

Contribution to Employment is measured as the total number of persons engaged directly or indirectly in production from the sector. It does not reflect the prevalence of part time work or those with irregular hours. *Note, this fishery has a large number of operators who work primarily in other fisheries, and take occasional or incidental Scalefish catches.

DECEMBER 2023
TASMANIAN SALMONID AQUACULTURE PRODUCTION*

ECONOMIC CONTRIBUTION TO TASMANIA

In 2020/21, the Tasmanian Salmonid aquaculture contributed $639 million dollars (total GVA) to the Tasmanian economy.

$639 MILLION
TOTAL GVA

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

1,933 PERSONS
DIRECT

3,255 PERSONS
INDIRECT

5,188 PERSONS
TOTAL

CONTRIBUTION TO
EMPLOYMENT

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers’ superannuation contributions and income tax, but excludes payroll tax.

Note, totals may not sum due to rounding.

Household Income

DIRECT GVA

$242.9 MILLION
FROM PRODUCTION IN TASMANIAN SALMONID AQUACULTURE

INDIRECT GVA

$395.6 MILLION

$181.9M FROM HOUSEHOLD RE-SPENDING OF INCOME

$213.7M FROM BUSINESS RE-SPENDING IN OTHER SECTORS

TOTAL HOUSEHOLD INCOME

$346.1 MILLION
FROM TASMANIAN SALMONID AQUACULTURE

$127.1M EARNED DIRECTLY AS INCOME BY FISHING HOUSEHOLDS

$219.0M EARNED IN OTHER TAS HOUSEHOLDS AS A RESULT OF SALMONID AQUACULTURE

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.

Note, totals may not sum due to rounding.

* These estimates rely on secondary data and data matching methods. Provision of primary data from industry would improve the accuracy of these estimates.
TASMANIAN PACIFIC OYSTER AQUACULTURE PRODUCTION

ECONOMIC CONTRIBUTION TO TASMANIA

In 2020/21, Tasmanian Pacific Oyster aquaculture contributed $42 million dollars (total GVA) to the Tasmanian economy.

$42 MILLION
TOTAL GVA

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers' superannuation contributions and income tax, but excludes payroll tax.

Note, totals may not sum due to rounding.

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers' superannuation contributions and income tax, but excludes payroll tax.

Note, totals may not sum due to rounding.

Adding Value

DIRECT GVA

$29.9 MILLION
FROM PRODUCTION IN TASMANIAN PACIFIC OYSTER AQUACULTURE

INDIRECT GVA

$12.4 MILLION
FROM HOUSEHOLD RE-SPENDING OF INCOME

$8.1M
FROM HOUSEHOLD RE-SPENDING IN OTHER SECTORS

$4.3M
FROM BUSINESS RE-SPENDING IN OTHER SECTORS

$15.5 MILLION
FROM PRODUCTION IN TASMANIAN PACIFIC OYSTER AQUACULTURE

$8.8M
EARNED DIRECTLY AS INCOME BY FISHING HOUSEHOLDS

$6.7M
EARNED IN OTHER TASMANIAN HOUSEHOLDS AS A RESULT OF PACIFIC OYSTER AQUACULTURE

TOTAL HOUSEHOLD INCOME

$15.5 MILLION
FROM TASMANIAN PACIFIC OYSTER AQUACULTURE

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.
TASMANIAN ABALONE AQUACULTURE PRODUCTION

ECONOMIC CONTRIBUTION TO TASMANIA

In 2020/21, Tasmanian Abalone aquaculture contributed $11 million dollars (total GVA) to the Tasmanian economy.

$11 MILLION
TOTAL GVA

CONTRIBUTION TO EMPLOYMENT IN TASMANIA

55 PERSONS
DIRECT

42 PERSONS
INDIRECT

97 PERSONS
TOTAL

Note, totals may not sum due to rounding.

ADDING VALUE

DIRECT GVA

$5.3 MILLION
FROM PRODUCTION IN TASMANIAN ABALONE AQUACULTURE

INDIRECT GVA

$5.2 MILLION
FROM HOUSEHOLD RE-SPENDING OF INCOME

$3.2M
$2.0M

$3.5M
$2.7M

TOTAL HOUSEHOLD INCOME

$6.2 MILLION
FROM TASMANIAN ABALONE AQUACULTURE

$3.2M EARNED DIRECTLY AS INCOME BY FISHING HOUSEHOLDS
$2.0M EARNED IN OTHER TASMANIAN HOUSEHOLDS AS A RESULT OF ABALONE AQUACULTURE

Household income is a measure of wages and salaries paid in cash and in kind, drawings by owner operators and other payments to labour. It includes overtime payments, employers’ superannuation contributions and income tax, but excludes payroll tax.

Note, totals may not sum due to rounding.

Gross Value Added (GVA) represents the value of all goods and services produced in an industry, minus the cost of all inputs and raw materials used to produce that good or service. It provides a measure of the net contribution of an activity to the State/Territory economies, excluding net taxes. Note, totals may not sum due to rounding.

Note, totals may not sum due to rounding.

DECEMBER 2023
Table 1. Economic Contribution of Tasmanian Commercial Fishing and Aquaculture Production to Tasmania, 2020/21

<table>
<thead>
<tr>
<th></th>
<th>Gross Value Added ($m)</th>
<th>Employment (No. Pers.)</th>
<th>Household Income ($m)</th>
<th>Revenue ($m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasmanian Rock Lobster Fishery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing</td>
<td>26.3</td>
<td>236</td>
<td>12.9</td>
<td>45.8</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>10.5</td>
<td>89</td>
<td>7.1</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>14.2</td>
<td>119</td>
<td>6.9</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>24.6</td>
<td>208</td>
<td>14.0</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>50.9</td>
<td>444</td>
<td>26.9</td>
<td>—</td>
</tr>
<tr>
<td>Tasmanian Abalone Fishery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing</td>
<td>41.7</td>
<td>150</td>
<td>6.5</td>
<td>48.8</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>4.4</td>
<td>40</td>
<td>3.3</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>7.0</td>
<td>59</td>
<td>3.4</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>11.4</td>
<td>98</td>
<td>6.7</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>53.1</td>
<td>248</td>
<td>13.3</td>
<td>—</td>
</tr>
<tr>
<td>Tasmanian Scalefish Fishery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing</td>
<td>2.6</td>
<td>159</td>
<td>1.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>1.5</td>
<td>14</td>
<td>1.1</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>2.1</td>
<td>17</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>3.6</td>
<td>31</td>
<td>2.1</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>6.3</td>
<td>190</td>
<td>3.9</td>
<td>—</td>
</tr>
<tr>
<td>Tasmanian Salmonid Aquaculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>242.9</td>
<td>1,933</td>
<td>127.1</td>
<td>667.6</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>213.7</td>
<td>1,729</td>
<td>130.7</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>131.9</td>
<td>1,526</td>
<td>88.3</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>395.6</td>
<td>3,255</td>
<td>219.0</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>638.5</td>
<td>5,188</td>
<td>346.1</td>
<td>—</td>
</tr>
<tr>
<td>Tasmanian Pacific Oyster Aquaculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>29.9</td>
<td>326</td>
<td>8.8</td>
<td>38.2</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>4.3</td>
<td>39</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>8.1</td>
<td>68</td>
<td>3.9</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>12.4</td>
<td>107</td>
<td>6.7</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>42.3</td>
<td>433</td>
<td>15.5</td>
<td>—</td>
</tr>
<tr>
<td>Tasmanian Abalone Aquaculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>5.3</td>
<td>55</td>
<td>3.5</td>
<td>9.3</td>
</tr>
<tr>
<td>Indirect (All Other Sectors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production induced</td>
<td>2.0</td>
<td>15</td>
<td>1.1</td>
<td>—</td>
</tr>
<tr>
<td>Consumption induced</td>
<td>3.2</td>
<td>27</td>
<td>1.6</td>
<td>—</td>
</tr>
<tr>
<td>Total indirect</td>
<td>5.2</td>
<td>42</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>Total*</td>
<td>10.5</td>
<td>97</td>
<td>6.2</td>
<td>—</td>
</tr>
</tbody>
</table>

Totals may not sum due to rounding.
This is a summary of the economic contributions of Tasmania’s fisheries and aquaculture industries to the Tasmanian economy. Full results and discussion are provided in *Tasmanian Fisheries and Aquaculture Industry 2020/21: Economic Contributions Technical Report*.

SCOPE

The estimates reported include economic contributions of commercial fishing production activity and aquaculture production activity.

These estimates are for economic contributions of these activities in Tasmania to the Tasmanian economy.

Commercial activities by Indigenous fishing and aquaculture businesses are included in commercial fishing and aquaculture. Commercial charter fishing activity is excluded. Fishery and aquaculture support sector management activity (other than where these costs are recovered through licence fees) is excluded. Seafood processing of either locally produced or imported seafood is excluded. The analysis relates to the primary production units only (i.e., the harvesting or farming activities).

The economic activity of sectors that supply goods and services to the commercial fishing and aquaculture industry are included in the analysis as the flow-on effects from the expenditures by the commercial fishing and aquaculture industry. This includes fishing support services and aquaculture support services.

The contributions of Tasmanian fisheries and aquaculture to the rest of Australia are outside the scope of this report.

DATA

Best available data for 2020/21 was used to produce estimates of industry total revenue, and of direct employment, GVA, GSP/GDP and household income. Data was collected from primary sources (databases and surveys) and published sources, where available, for the individual fisheries/aquaculture sectors. This data included: wild catch/farm production, product prices, cost of production, licence fees, employment. Further information on data sources is provided in the *Tasmanian Fisheries and Aquaculture Industry 2020/21: Economic Contributions Technical Report*.

MODEL APPROACH

The flow-on effects of each fishery and aquaculture sector in this report were estimated using input-output (IO) analysis. An extended input-output model known as the RISE model (Regional Industry Structure and Employment) was developed by BDO Pty Ltd for this analysis. The model describes the interlinkages between different industries and different types of economic activity in Tasmania’s economy.

LIMITATIONS

The main limitations are due to data gaps and issues with data quality for some sectors. Limited data was available to estimate the contributions of the processing sector, and as such the estimates for this sector have been omitted from the current report. Similarly, the estimates present an incomplete profile of economic contributions made along the seafood supply chain, as secondary processing and retail sectors are not included due to lack of data. Addressing this by collecting data on these sectors presents an opportunity to produce more comprehensive estimates in future.

Likewise, the provision of primary data for the Tasmanian Salmonid Aquaculture sector would improve accuracy so those results.

COMPARISON

Comparisons of these estimates can also be made with other productive industries (for example, beef or sheep). These will be less reliable due to differences in the number of sectors included (this study included only the catch/production sector), data availability and quality, and modelling across various studies.

The use of these estimates to predict the impact of changes in the level of activity of the fisheries and aquaculture industries is not advised. While results can be used to highlight the possible size and nature of impacts, further analysis would be required to estimate the actual impact on the economic measures of such changes.

Comparisons of the economic contributions of commercial fisheries and recreational fisheries (made as fishing-related expenditures generate direct and indirect economic impacts) should not be made. The two activities are fundamentally different and require different input-output modelling approaches, and comparison can only be made where estimates are comprehensive.

For commercial fisheries this requires that estimates include backward and forward linked sectors (for example, boat building sectors, as well as seafood retail sectors). For recreational fisheries this requires that only expenditures that are directly attributable to fishing are included in the estimate.

The use of estimates of economic contributions to predict the impact on a state or territory economy of changes in resource allocation between commercial and recreational fisheries can complement economic benefit or efficiency analysis. However, it would require further knowledge to determine how inputs would be redeployed in the economy by other sectors where commercial fishing is no longer occurring, and how recreational fishers would spend their discretionary income on substitutable activities were they not able to recreationally catch fish.

This work also supports the ability for individual industries and jurisdictions to monitor trends in the size of contributions over time.
MORE AT
IMAS.UTAS.EDU.AU